Maximum Likelihood Molecular Clock Comb: Analytic Solutions
نویسندگان
چکیده
Maximum likelihood (ML) is increasingly used as an optimality criterion for selecting evolutionary trees, but finding the global optimum is a hard computational task. Because no general analytic solution is known, numeric techniques such as hill climbing or expectation maximization (EM), are used in order to find optimal parameters for a given tree. So far, analytic solutions were derived only for the simplest model--three taxa, two state characters, under a molecular clock. Four taxa rooted trees have two topologies--the fork (two subtrees with two leaves each) and the comb (one subtree with three leaves, the other with a single leaf). In a previous work, we devised a closed form analytic solution for the ML molecular clock fork. In this work, we extend the state of the art in the area of analytic solutions ML trees to the family of all four taxa trees under the molecular clock assumption. The change from the fork topology to the comb incurs a major increase in the complexity of the underlying algebraic system and requires novel techniques and approaches. We combine the ultrametric properties of molecular clock trees with the Hadamard conjugation to derive a number of topology dependent identities. Employing these identities, we substantially simplify the system of polynomial equations. We finally use tools from algebraic geometry (e.g., Gröbner bases, ideal saturation, resultants) and employ symbolic algebra software to obtain analytic solutions for the comb. We show that in contrast to the fork, the comb has no closed form solutions (expressed by radicals in the input data). In general, four taxa trees can have multiple ML points. In contrast, we can now prove that under the molecular clock assumption, the comb has a unique (local and global) ML point. (Such uniqueness was previously shown for the fork.).
منابع مشابه
Analytic solutions of maximum likelihood on forks of four taxa.
This work deals with symbolic mathematical solutions to maximum likelihood on small phylogenetic trees. Maximum likelihood (ML) is increasingly used as an optimality criterion for selecting evolutionary trees, but finding the global optimum is a hard computational task. In this work, we give general analytic solutions for a family of trees with four taxa, two state characters, under a molecular...
متن کاملMolecular clock fork phylogenies: closed form analytic maximum likelihood solutions.
Maximum likelihood (ML) is increasingly used as an optimality criterion for selecting evolutionary trees, but finding the global optimum is a hard computational task. Because no general analytic solution is known, numeric techniques such as hill climbing or expectation maximization (EM) are used in order to find optimal parameters for a given tree. So far, analytic solutions were derived only f...
متن کاملAnalytic Solutions for Three-Taxon MLMC Trees with Variable Rates Across Sites
We consider the problem of finding the maximum likelihood rooted tree under a molecular clock (MLMC), with three species and 2-state characters under a symmetric model of substitution. For identically distributed rates per site this is probably the simplest phylogenetic estimation problem, and it is readily solved numerically. Analytic solutions, on the other hand, were obtained only recently (...
متن کاملMaximum likelihood Jukes-Cantor triplets: analytic solutions.
Maximum likelihood (ML) is a popular method for inferring a phylogenetic tree of the evolutionary relationship of a set of taxa, from observed homologous aligned genetic sequences of the taxa. Generally, the computation of the ML tree is based on numerical methods, which in a few cases, are known to converge to a local maximum on a tree, which is suboptimal. The extent of this problem is unknow...
متن کاملThe Allan Variance as an Estimator of the Long-memory Parameter: Time-domain and Wavelet Methods
The Allan variance is a well-known estimator of frequency stability and is often used to classify a time series into one of the standard clock noise types. By identifying the power-law model for clock noise with its long-memory equivalent, the Allan variance can also serve as an estimate for the long-memory parameter. Although the Allan variance is not a maximum likelihood estimator, it can be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 13 3 شماره
صفحات -
تاریخ انتشار 2006